

(c) 1.2 sec

		DPP – 1 (Current Electricity)			
Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/5			
Video Solution on YouTube:-		https://youtu.be/R38fNRV3b-E			
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/52			
Q 1.	The current flowing through wire depends on time as, $I = 3t^2 + 2t + 5$. The charge flowing through the cross - section of the wire in time $t = 0$ s to $t = 2$ s is:				
	(a) 22 C (c) 18 C	(b) 20 C (d) 5 C			
Q 2.	The charge flowing the time after which the cu (a) 0.2 sec	rough a conductor varies with time as $q = 8t - 3t^2 + 5t^3$. Find urrent reaches to minimum value of current: (b) 2 sec			

Q 3. The charge flowing through a conductor beginning with time t=0 is given by the formula $q = 2t^2 + 3t + 1$ (coulomb). Find the current at the end of the 5th seconds: (a) 2.3 Amp (c) 2.5 Amp (d) 23 Amp

(d) 2.5 sec

- Q 4. In a conductor, 4 coulombs of charge flows for 2 seconds . The value of electric current will be: (a) 4 Amp (c) 1 Amp (d) 3 Amp
- Q 5. A current of 4.8 A is flowing in a conductor. The number of electrons passing per second through the conductor will be: (a) 3×10^{20} (b) 76.8×10^{20} (c) 7.68×10^{20} (d) 3×10^{19}
- Q 6. When current i is flowing through a conductor, the drift velocity is v. If the value of current through the conductor and its area of cross-section is doubled, then new drift velocity will be:

(a) 4 <i>v</i>	(b) $\frac{v}{2}$
(c) $\frac{v}{4}$	(d) v

Q 7. Every atom makes one free electron in copper. If 1.1 ampere current is flowing in the wire of copper having 1 mm diameter, then the drift velocity (approx.) will be (Density of copper = $9 \times 10^3 kg/m^3$ and atomic weight = 63): (a) 0.3 mm/sec (b) 0.1 mm/sec

(c) 0.2 *mm/sec*

Q 8. An electric current of 16A exists in a metal wire of cross section $10^{-6} m^2$ and length 1m. Assuming one free electron per atom. The drift speed of the free electrons in the wire will be: (Density of metal = $5 \times 10^4 kg/m^3$ and atomic weight = 60): (a) 0.5 mm/sec (b) 0.2 mm/sec(c) 0.4 mm/sec (d) 7.5 mm/sec

(d) 0.2 *cm/sec*

- Q 9. An electric cell of emf E is connected across a copper wire of diameter d and length l. The drift velocity of electrons in the wire is V_d . If the length of the wire is changed to 2l, the new drift velocity of electrons in the copper wire will be:
 - (a) V_d (b) $2V_d$ (c) $\frac{V_d}{2}$ (d) $\frac{V_d}{4}$
- Q 10. Drift velocity V_d . varies with the intensity of electric field as per the relation:
 - (a) $V_d \propto E$ (b) $V_d \propto \frac{1}{E}$ (c) $V_d = constant$ (d) $V_d \propto E^2$
- Q 11. A wire has a nonuniform cross sectional area as shown in the figure. A steady current i flows through it. Which one of the following statements is correct?

- Q 12. A conductor carries a current of 50 μ A. If the area of cross-section of the conductor is 50 mm^2 , then value of the current density in A/m² is:
 - (a) 0.5 (b) 1 (c) 10^{-3} (d) 10^{-6}
- Q 13. A steady current flow in a metallic conductor of non-uniform cross-section. The quantity/ quantities constant along the length of the conductor is/are:
 - (a) Current, electric field and drift speed
 - (b) Drift speed only
 - (c) Current and drift speed
 - (d) Current only

Answer Key

Q.1 a	Q.2 a	Q.3 d	Q.4 b	Q.5 d
Q.6 d	Q.7 b	Q.8 b	Q.9 c	Q.10 a
Q.11 b	Q.12 b	Q.13 d		

PRATISICS ATHONINGS RANSICS ATHONINGS